Control Theory
Several agent control policies and agent ActionSpaceType
are demonstrated. Run these examples as follows.
$ cd <path>/SMARTS
# Build the scenario `scenarios/sumo/loop`.
$ scl scenario build scenarios/sumo/loop
# Run SMARTS simulation with Envision display and `loop` scenario.
$ scl run --envision examples/<script_name>.py scenarios/sumo/loop
# Visit http://localhost:8081/ to view the experiment.
Chase Via Points
script: control/chase_via_points.py
Multi agent
ActionSpaceType:
LaneWithContinuousSpeed
Trajectory Tracking
script: control/trajectory_tracking.py
ActionSpaceType:
Trajectory
OpEn Adaptive Control
script: control/ego_open_agent.py
ActionSpaceType:
MPC
Laner
script: control/laner.py
Multi agent
ActionSpaceType:
Lane
Parallel Environments
script: control/parallel_environment.py
Multiple SMARTS environments in parallel
ActionSpaceType:
LaneWithContinuousSpeed